Post-trauma vision syndrome: “myopia” AND accommodative insufficiency?

Steve Leslie
B Optom FACBO FCOVD

Post-trauma vision syndrome

- Myopia
- Accommodative insufficiency
- Convergence insufficiency
- Possible exotropia, exophoria
- Photophobia
- Decreased blink rate
- Spatial disorientation
- Balance and postural difficulties

PTVS symptoms

- Diplopia
- Objects appear to move
- Visual memory problems
- Staring behaviour
- Poor tracking ability
- Asthenopic symptoms

Incidence

In my experience:
- Any traumatic closed head injury resulting in coma, with initial global effects on motor and cognitive function
- Typically involves midbrain
Frequency (Kowal 161 pts)
- 16% poor accommodation
- 19% pseudomyopia (55% persisted)
- “4 had poor accommodation despite pseudomyopia”

Differential
- Spasm of the near reflex
 - Accommodative excess
 - Miosis
 - Esophoria/tropia
- Accommodative spasm
 - Excessive accommodation tonus: should it be excessive when measured at distance and near?

“Pseudomyopia”
- The excess accommodation disappears with cycloplegia, but commonly recurs as cycloplegia wears off (London, Kowal)
- Thus, it is excessive accommodation ie focusing closer than normal when tested at distance, but why?

Treatment
- Atropinisation
 - “Treatments using cycloplegics with sunglasses and bifocals were... uniformly rejected by patients... (Kowal)”
- Refractive correction, near addition
- Vision therapy: accommodative facility
Neurological causation
(London)

- "shift secondary to an irritative lesion that affects the parasympathetic innervation, resulting in ciliary body contraction."
- "secondary to neural irritation of the parasympathetic third nerve subnucleus, or possibly disinhibition of brain stem centres."

Control of accommodation

- Learned proximal information
- Blur
- Conscious/voluntary
- Convergence

Accommodation...
sensorimotor intelligence
(Wachs)

- a self-directed, intrinsically constructed knowledge of body, physical world and practical use...(Wachs)

Accommodation

- Identification of an object fixated in space along the third dimension of the learned visual space construct.
- The Z axis is constructed through experience of the baby and child through proprioceptive and kinaesthetic feedback of eye hand activities.
- Spatial construct to accurately localise the identification system in space.
X and Y axes

- Given by the egocentric laterality of the body, and gravitational vertical of the body.
- Disturbances of the learned X and Y spatial coordinates (ambient system) eg by hemianopia, or midbrain/brainstem trauma, could disrupt the basis for the Z axis.

Dark focus

- Location of accommodation in space in the absence of visual information.
- Young adults
 - Mean 1.6D (62.5 cms), range 0-4D
- Large variations in studies
- But individuals relatively stable
- Gradual changes due to continued close work.

Dark focus

- Changes with nervous system activity
- Measurement by laser optometer
- Clinically measured by a stigmatoscope ie light of a retinoscope in a dark room
- But results variable

Concept of dark focus

- Resting point of accommodation
- We focus OUT for distance tasks
- And focus IN for near tasks
Mathematics!

- Myopia is a relative posturing of the identification system closer in space than the demand (zero at 6 metres)
- Myopia of 1 dioptre means the identification system is localising at 1 metre from the individual
- Myopia of 2 D means it is at 50 cms
- Etc

Accommodative insufficiency

- A lag of accommodation measured by near retinoscopy at 40 cms is a measure of less response than the demand of 2.5 D
- A lag of 1 D means a response of 1.5 D (2.5-1.0), and identification is localising at 67 cms
- A lag of 2 D indicates a spatial value of 2 metres etc

Pattern of PTVS

- Moderate degree of myopia, and moderate to severe degree of accommodative insufficiency
- It is not accommodative spasm in the true sense, since there is excessive focus at distance but insufficient focus at near
- Patterns (London)
 - Transient case which resolves
 - Commonly chronic but stable mild myopia
 - Less commonly, progressive myopia
Post trauma vision syndrome

- **Accommodative insufficiency**
- **Myopia**
- **Movement in towards dark focus of identification system with distance attention**
- **Movement out to dark focus of identification system with attention at near**

Study data

- Randomly selected 15 records from TBI patient population with:
 - History of traumatic head injury
 - Post-traumatic myopia
 - No pre-existing myopia
 - No ocular pathology (other than possible common mild optic atrophy)
 - Age range 21-43
 - 13 males, 2 females, long term problems.

RE myopia

<table>
<thead>
<tr>
<th>Age</th>
<th>RE sph</th>
<th>RE spatial</th>
<th>LE sph</th>
<th>LE spatial</th>
<th>MEM log</th>
<th>MEM spatial</th>
<th>DEW/msec</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>-0.75</td>
<td>133</td>
<td>1</td>
<td>100</td>
<td>3</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>41</td>
<td>-0.25</td>
<td>80</td>
<td>-1.25</td>
<td>90</td>
<td>1.5</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-0.25</td>
<td>80</td>
<td>-1.25</td>
<td>90</td>
<td>1.5</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>33</td>
<td>-0.5</td>
<td>100</td>
<td>-1</td>
<td>100</td>
<td>1.5</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>38</td>
<td>-0.25</td>
<td>80</td>
<td>-1.25</td>
<td>90</td>
<td>1.5</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>-0.25</td>
<td>44</td>
<td>-1.25</td>
<td>90</td>
<td>1.5</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>0</td>
<td>13</td>
<td>-1.5</td>
<td>19</td>
<td>0.5</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>24</td>
<td>-0.75</td>
<td>133</td>
<td>-1.25</td>
<td>90</td>
<td>1.5</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>-0.75</td>
<td>133</td>
<td>1</td>
<td>100</td>
<td>1.75</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>-1.25</td>
<td>80</td>
<td>-1.25</td>
<td>90</td>
<td>1.5</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>-1.25</td>
<td>80</td>
<td>-1.5</td>
<td>67</td>
<td>1.5</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>-0.75</td>
<td>133</td>
<td>-1.25</td>
<td>90</td>
<td>0.25</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>46</td>
<td>-1.25</td>
<td>80</td>
<td>-1.25</td>
<td>90</td>
<td>1.5</td>
<td>50</td>
<td>0</td>
</tr>
</tbody>
</table>
Summary

- The majority of post-traumatic myopia is -1.00 to -1.25 sphere, with minimal or no cylinder.
- The visual systems, when asked to attend at 6m, localise around 1 metre.
Summary

- The majority of near accommodative response is to localise between 60 and 100 cms from the patient.

Difference between near and distance loci (cms)

The most common response (6/15) of the identification systems in this study, when tested at distance and near, is to localise in the same place in space at about 1 metre from the patient.

And....

- Is this contiguous with the dark focus?
- Dark focus varies individually, and can change gradually over time; we do not know their pre-trauma dark focus.
- We are in the process of re-examining these patients for dark focus and trends over time.
- I now routinely measure dark focus on all TBI patients.
Implications

- London describes three patterns of post-trauma myopia
 1. Transient cases which resolve
 2. Chronic but stable, most common
 3. Progressive myopia, less common

In my experience...

- The cases studied are all long term, chronic problems. The transient cases may not present as much for care, as their neurological recovery takes precedence over transient visual needs.
- Treatment involves?
 - The majority of these chronic cases studied show stable myopia and accommodative function over time.

Hypothesis

- Brain trauma can disrupt a person’s ability to access learned Z-axis sensorimotor control of accommodation in visual space
- The system loses its ability to know and respond to changes in task distance

Hypothesis

- The accommodation system essentially localises at its resting tonus ie dark focus
- Testing at distance shows myopia
- Testing at near shows accommodative lag
- Long term, the system builds in this new “learned” space, unless the system is retrained at an early, plastic stage
Using the model outlined:

- An acute case of post-traumatic myopia should be managed by aggressive vision therapy of accommodation, emphasising change in space supported by proprioceptive involvement; together with sufficient plus at near to minimise near visual stress.
- It may be possible to relearn the visual-spatial skill of focusing.

Chronic but stable...

- A chronic but stable case of post-traumatic pseudomyopia should be managed by:
 - Minus at distance if indicated
 - Plus at near
 - Annual reassessment
- The patient has essentially rebuilt their visual space around the adaptation, and cannot access the lost knowledge of how to operate identification in space.

Progressive pseudomyopia...

- Post-traumatic progressive pseudomyopia and accommodative insufficiency should be managed by:
 - Minus at distance combined with plus at near
- The patient’s adaptation of visual space is not “working” for them, so it continues to build as in a progressive myope, increasing apparent myopia and reducing accommodative lag to an eventual lead of accommodation.

Ambient visual function

- Many severe traumatic brain injuries involve the midbrain, where peripheral retinal input is integrated with proprioceptive and vestibular information.
- “The ambient visual process must let you know where you are in space and essentially where you are looking before you process information about what you are looking at” (Padula & Argyris).
Disruption of the ambient visual process disrupts the construct and stability of space so that the Z-axis loses reference.

The disruptions directly and indirectly cause:
- Spatial disorientation
- Balance and postural difficulties
- Objects appear to move
- Floor tilting etc

Conclusion

- Measure near function in TBI patients and relate it to far function
- Does patient touch change near function (proximal information)?
- Use lenses, prisms, and VT to re-develop, or at least to stabilise adapted visual spatial judgment.