A COMPARISON OF SUBJECTS with CONVERGENCE INSUFFICIENCY and SUBJECTS with NORMAL BINOCULAR VISION Using A Quality Of Life Questionnaire

Trevor White, O.D. a
Archima Major, O.D. a

a. Northeastern State University Oklahoma College of Optometry

Abstract
The purpose of this study was to investigate whether symptoms of subjects diagnosed with convergence insufficiency (CI) were statistically different from those subjects with normal binocular vision (NBV), using the College of Optometrists in Vision Development-Quality of Life (COVID-QOL) questionnaire. Some 129 charts from the Northeastern State University Oklahoma College of Optometry's (NSUOCO) vision therapy clinic were retrospectively reviewed and separated into three groups: those diagnosed with CI, those with normal binocular vision and those not fitting the criteria for either group 1 or 2. Each symptom on the COVID-QOL was analyzed for its prevalence and severity in groups 1 and 2. The data was evaluated, using the student t-test. Two of the 30 symptoms listed in the COVID-QOL checklist were statistically significant at the 0.05 level of confidence; and two others approached significance for subjects with CI when compared to those with NBV. A definite discrimination between the two groups, CI and NBV, could not be made using any other symptom on the COVID-QOL questionnaire.

INTRODUCTION
Binocular visual anomalies are common dysfunctions that often vary symptomatically, and can potentially reduce visual performance and/or comfort.1-11 The standard of care for the management of these anomalies is optometric vision therapy (VT), which includes lens and prism application.12-20 The conditions that are subsumed in this area of optometric care are anomalies of the visuomotor, ocular motor, binocular, accommodative, and information processing components of the visual system.12 Previous studies by Montes-Mico1 and Hokoda1 have shown a high association between the prevalence of binocular vision disorders and visually related complaints. These binocular disorders can interfere with maximum visual performance, and are most often exhibited during nearpoint activities.

Quality of life (QOL) factors are becoming increasingly important, especially in this era of assessment and accountability.21-24 Assessment of QOL factors is beneficial for the provider for symptom evaluation and to patients' third party providers in determination of treatment success.16,25 These factors are becoming increasingly important in managed care reimbursement and the cost containment arena. Although a concrete definition of QOL has yet to be established, QOL factors directly impact the morbidity of disease. The QOL can be measured through a questionnaire. QOL information has traditionally been gathered before the examination in an informal case history. When individual needs are assessed, better management decisions can be made. Quantifiable QOL measures have been proposed to evaluate treatment modalities or to compare experimental and control groups.22 The College of Optometrists in Vision Development (COVID) developed a one page questionnaire (COVID-QOL) of 30 items that assesses subjective changes in a patient's behavior and performance associated with binocular visual anomalies. See Appendix A.22-24 QOL symptom/treatment evaluation has proven to be reliable, valid, and appropriate for these anomalies.21,23,24 In a study by Maples, it was demonstrated that the COVID-QOL checklist could be used confidently to monitor patient symptoms before, during and after VT.23

The purpose of the present study was to assess statistical significance of the symptoms specified on the COVID-QOL in subjects diagnosed with convergence insufficiency (CI), as compared to those with normal binocular vision (NBV).

SUBJECTS
A total of 21 subjects who fit the diagnostic criteria, CI or NBV (as defined in the next section) were included in this study. They ranged in age from 7-19 years, with an average age of 11.0 years, and were age and sex matched between the two groups. Subjects with diagnosed learning disabilities, attention deficit hyperactivity disorder, corrected visual acuity less than 20/25, strabismus, or ocular pathology were excluded from the study.
MATERIALS and METHODS

A total of 129 charts of patients who had been examined at the Northeastern State University Oklahoma College of Optometry's (NSUOCO) VT Clinic were retrospectively reviewed and separated into three groups by one of the authors (T.W.). Group 1 consisted of 10 patients whose VT evaluations had resulted in the diagnosis of convergence insufficiency (CI). This diagnosis was based on the clinical findings at the initial exam and the basic clinical signs used in the Convergence Insufficiency in Reading Study (CIRS). These signs are:
1. exophoria at near of at least 4 prism diopters (Δ) greater than the distance heterophoria;
2. insufficient positive fusional vergence (failing Sheard's criterion of at least 12 Δ BO to blur or 15 Δ to BO break);
3. receded nearpoint of convergence (NPC) (i.e. greater than 7.5cm break or 10.5cm recovery).

CI was diagnosed when at least two signs were present (high suspect CI) or if all clinical signs were present (definite CI).

Group 2 consisted of 11 patients whose evaluations in the VT clinic resulted in the diagnosis of normal binocular vision (NBV), according to the CIRS criteria. These criteria are:
1. near phoria between 2 Δ esophoria and 8 Δ exophoria;
2. near negative fusional vergence values greater than 9/17/8 Δ BI;
3. near positive fusional vergence greater than 12/15/4 Δ BO;
4. negative relative accommodation greater than +1.50 diopters (D);
5. positive relative accommodation greater than -1.25 D;
6. NPC less than 7.5cm.

Group 3 consisted of those subjects who did not fit the criteria of groups 1 or 2. They were not diagnosed as CI but their data was used for totals in the analysis of the overall prevalence of CI at NSUOCO. Group 3 data underwent no further analysis. The study met the requirements of the NSU's Institutional Review Board (IRB).

The COVID-QOL contains 30 symptoms that impact one's daily comfort and performance. Each symptom is rated by the patient and/or parent according to the frequency the symptom is experienced. Symptom ratings are: never, seldom, occasionally, frequently, or always. See Appendix A. The COVID-QOL represents a global survey of not only nearpoint issues, but also distance issues. Participants included in groups one and two were required to have a completed COVID-QOL on file. Group 3 records underwent no further analysis.

The level of reliability, validity, and appropriateness of the COVID-QOL have been investigated. Reliability here refers to the test-retest repeatability of the survey, while validity refers to the ability of the survey to adequately address a desired issue. Each symptom on the COVID-QOL was analyzed for its prevalence and severity in groups 1 and 2. The data was statistically evaluated by a student t-test.

RESULTS

The results yielded a 7.75% (10 of 129 records) prevalence of CI in the NSUOCO VT Clinic. The means of 21 of the 30 symptoms were higher for the CI group (See Table 1) when compared to the NBV group. CI subjects had significantly higher scores, p < 0.05, in two symptoms: item 1-Blurred vision at near; and item 10-Head tilt or close eye when reading. Scores that approached significance were item 12-Avoidance of reading and near work p=0.06, and item 14-Writing uphill or downhill p=0.057, See Table 1. Item 10 represents the largest (10-fold) difference in means between the two groups; the CI group rated this item an average of 1.80 versus the NBV group of 0.18. Figure 1 graphically depicts the means for each of the COVID-QOL symptoms.

DISCUSSION

This retrospective chart review was performed to ascertain whether subjects diagnosed with CI could be separated...
Symptoms of Convergence Insufficiency (CI) Subjects to Normal Binocular Vision (NBV) Subjects

![Graph showing symptoms of Convergence Insufficiency (CI) subjects compared to Normal Binocular Vision (NBV) subjects.]

Figure 1. Symptom means of CI and NBV subjects of the COVD-QOL checklist.

from subjects with NBV on the basis of COVD-QOL scores. Patients, upon arrival at the NSUOCO VT Clinic, routinely complete this checklist.

The COVD-QOL is divided into four categories, which represent the global nature of the survey. These categories include: physical/occupational, psychological, social interaction, and somatic sensations. Two of the 30 items listed in the COVD-QOL were statistically significant at the 0.05 level of confidence, and two approached this level when subjects with CI when compared to those with NBV.

The CIRS had designed a questionnaire with 15 items identified as being specific for CI. See Appendix B. Maples has compared the COVD-QOL and the CIRS survey. He concluded that there are more similarities between the two checklists than there are differences, but that the COVD-QOL is more comprehensive. A future study could compare the sensitivity and specificity of each of these two questionnaires for identifying patients with CI.

Our retrospective study indicates that there is a positive relation between the presence of nearpoint symptoms, specifically blurred vision at near, head tilt or close eye when reading, avoidance of reading and near work, and writing uphill or downhill, in individuals with CI. Furthermore, our study did not show that a definite discrimination between the two groups (CI and NBV) can be made using the COVD-QOL, except for the relationships found in the four symptoms previously discussed. However, it must be kept in mind that the checklist was designed to indicate QOL factors for conditions other than CI. QOL factors are very important in determining the therapy program to be instituted in treating a particular visual disorder; and can therefore greatly influence the outcome of therapy. It is for this very reason that such factors be evaluated and quantified, as they portray how a binocular anomaly impacts an individual's visual and social performance.

Other symptoms listed in the COVD-QOL were not significantly higher in the CI group than the NBV group; yet it is possible that an individual with CI certainly could experience them. These symptoms may, however, be more interrelated with other co-existing visual dysfunctions.

As with any study, confounding variables and limitations may introduce potential sources of error. In the present study one such source is that patients examined in the VT clinic were referred from satellite units throughout the NSUOCO clinic system. Thus, all patients had suspected or previously diagnosed binocular dysfunctions and were consequently a biased sample.

Furthermore, unlike the CIRS, which is administered by a clinician to the parent and child, different clinicians presented the COVD-QOL variably in our study. The parent may have been asked to complete the checklist at one instance, while both the parent and child were encouraged to work together in completing the form at another. This limitation has proven to be a confounding factor when using the COVD-QOL as an indicator for measuring success in VT.

Finally, although 21 of the 30 items were scored higher in the CI group as opposed to the NBV group, the fact that there was only a total of 21 subjects in the study is a very limiting factor. Consequently, the present data should be viewed as a pilot study and an impetus for further research that should address the previously described limitations.

CONCLUSIONS

From the results of this pilot study: there is evidence of a 7.75% prevalence of CI at the NSUOCO VT clinic, a figure which is in agreement with previous reports of the condition in a clinical setting: two of the 30 COVD-QOL items are higher for CI than they are for NBV at a statistically significant level; and two of the COVD-QOL items closely approached significance in the same manner. A larger sample may reveal more of the COVD-QOL items to be significant predictors of CI. Any similar study should control for COVD-QOL items that are related to other oculomotor, binocular, accommodative and perceptual deficits. The COVD-QOL may have significant potential in differentially screening for visual problems.

Acknowledgements

We would like to thank Richard Hones, MA, for his assistance in our statistical analyses. We would also like to thank Dr. W.C. Maples for his experience and willingness to devote his time and knowledge to this research project.

REFERENCES

7. Shapiro A. I've got a problem with "conver-
8. Cooper J, Duckman R. Convergence insuffi-
9. Hussein M, Hyman L, Rouse MW. How do
you make the diagnosis of convergence insuffi-
of the visual symptoms between ADD/ADHD
11. Hoffman LG. Incidence of vision difficulties
12. Cohen AH. The efficacy of optometric vision
of vision therapy for convergence insuffi-
14. Gallaway M, Scheiman M. The efficacy of vi-
15. Keddington J, Pierce JR, Wold RM. Effectiv-
16. Lane KA, Maples WC. Parents' satisfaction
17. Maples WC, Bither M. Efficacy of vision therapy
as assessed by the COVD Quality of Life
18. Griffin JR. Efficacy of Vision Therapy for
Nonstrabismic Vergence Anomalies. Am J
19. Rouse MW. Management of binocular anom-
alies: efficacy of vision therapy in the treatment of
accommodative deficiencies. Am J Optom
20. Petrov GT, Suchott J. The efficacy of visual
therapy: accommodative disorders and non-
strabismic anomalies of binocular vision.
21. Hoffman LG, Rouse MW, Brin BN. Quality of
23. Maples WC. Test-retest reliability of the col-
ge of optometrists in vision development
quality of life outcomes assessment. Optom
24. Maples WC. Test-retest reliability of the col-
ge of optometrists in vision development
quality of life outcomes assessment short
26. Borsting E, Land PN, Rouse MW. Prospective
comparison of convergence insufficiency and
normal binocular children on CIRES symptom
27. Farrar R, Call M, Maples WC. A comparison
of the visual symptoms between ADD/ADHD
28. Vaughn W, Maples WC. The association be-
tween vision quality of life and academics as
measured by the COVD-quality of life ques-
tionnaire. Senior project Northeastern State
University Oklahoma College of Optometry,
Tahlequah OK; 2003.

APENDIX A. COVD-QOL

<table>
<thead>
<tr>
<th>Item</th>
<th>Category</th>
<th>Symptom</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S</td>
<td>Blurred vision at near</td>
</tr>
<tr>
<td>2</td>
<td>S</td>
<td>Double vision</td>
</tr>
<tr>
<td>3</td>
<td>S</td>
<td>Headaches associated with near work</td>
</tr>
<tr>
<td>4</td>
<td>S</td>
<td>Words run together when reading</td>
</tr>
<tr>
<td>5</td>
<td>S</td>
<td>Burning, stinging, watery eyes</td>
</tr>
<tr>
<td>6</td>
<td>S</td>
<td>Falling asleep when reading</td>
</tr>
<tr>
<td>7</td>
<td>S</td>
<td>Vision worse at the end of the day</td>
</tr>
<tr>
<td>8</td>
<td>PO</td>
<td>Skipping or repeating lines when reading</td>
</tr>
<tr>
<td>9</td>
<td>S</td>
<td>Dizziness or nausea associated with near work</td>
</tr>
<tr>
<td>10</td>
<td>PO</td>
<td>Head tilt or close eye when reading</td>
</tr>
<tr>
<td>11</td>
<td>PO</td>
<td>Difficulty copying from the chalkboard</td>
</tr>
<tr>
<td>12</td>
<td>PO</td>
<td>Avoidance of reading and near work</td>
</tr>
<tr>
<td>13</td>
<td>PO</td>
<td>Omitting small words when reading</td>
</tr>
<tr>
<td>14</td>
<td>PO</td>
<td>Writing uphill or downhill</td>
</tr>
<tr>
<td>15</td>
<td>PO</td>
<td>Misaligning digits in columns of numbers</td>
</tr>
<tr>
<td>16</td>
<td>PO</td>
<td>Reading comprehension declining over time</td>
</tr>
<tr>
<td>17</td>
<td>SI</td>
<td>Inconsistent/ poor in sports performance</td>
</tr>
<tr>
<td>18</td>
<td>PO</td>
<td>Holding reading material too close</td>
</tr>
<tr>
<td>19</td>
<td>P</td>
<td>Short attention span</td>
</tr>
<tr>
<td>20</td>
<td>SI</td>
<td>Difficulty completing assignment in reasonable time</td>
</tr>
<tr>
<td>21</td>
<td>P</td>
<td>Saying "I can't" before trying</td>
</tr>
<tr>
<td>22</td>
<td>SI</td>
<td>Avoiding sports and games</td>
</tr>
<tr>
<td>23</td>
<td>PO</td>
<td>Difficulty with hand tools, scissors, screwdriver, calculator, keys</td>
</tr>
<tr>
<td>24</td>
<td>P</td>
<td>Inability to estimate distance accurately</td>
</tr>
<tr>
<td>25</td>
<td>PO</td>
<td>Tendency to knock things over on desk or table</td>
</tr>
<tr>
<td>26</td>
<td>SI</td>
<td>Difficulty with time management</td>
</tr>
<tr>
<td>27</td>
<td>SI</td>
<td>Difficulty with money concepts, making change</td>
</tr>
<tr>
<td>28</td>
<td>P</td>
<td>Misplaces or loses papers, objects, belongings</td>
</tr>
<tr>
<td>29</td>
<td>S</td>
<td>Car sickness/ motion sickness</td>
</tr>
<tr>
<td>30</td>
<td>P</td>
<td>Forgetful, poor memory</td>
</tr>
</tbody>
</table>

S, somatic sensation; PO, physical/occupational; SI, social interaction; and P, psychological well being.
APPENDIX B. CIRS Symptom Questionnaire (parent version)

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Never</th>
<th>Sometimes</th>
<th>Often</th>
<th>Very Often</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Has your child reported that his/her eyes feel tired or uncomfortable when reading or studying?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Has your child reported having headaches when reading or studying?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Has your child reported feeling sleepy when reading or studying?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Have you noticed your child losing his/her concentration when reading or studying?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Have you noticed your child having trouble remembering what he/she has read?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Has your child reported double vision when reading or studying?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Has your child reported seeing the words move, jump, swim, or appear to float on the page when reading or studying?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Do you feel your child reads slowly?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Has your child reported that his/her eyes ever hurt or feel sore when reading or studying?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Has your child reported a “pulling” feeling around his/her eyes when reading or studying?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Has your child reported words blurring or coming in and out of focus when reading or studying?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Have you seen or has your child reported losing his/her place while reading or studying?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Have you seen or has your child reported having to re-read the same line of words when reading?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Does your child avoid reading?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Do you feel your child has a short attention span when reading or studying?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>