Many presbyopic contact lens wearers desire to avoid reading glasses, are dissatisfied with the visual limitations imposed by bifocal contact lenses, and find monovision a satisfactory alternative. Practitioners who do not emphasize binocular vision in their practice frequently welcome monovision as a simple way to fit the patient and avoid the need for reading glasses. Practitioners who do vision therapy in their practices, in contrast, frequently view monovision as a procedure which interferes with binocular vision, reduces visual efficiency, and should therefore be avoided. In this issue, the case for monovision (beginning on this page) is discussed by Dr. Paul Erickson, a respected contact lens researcher, and Dr. Paul Farkas, a well-known contact lens practitioner. Concerns about monovision (beginning on page 123) are expressed by Dr. Stuart Rothman, a noted optometric educator and clinician who is extensively engaged in vision therapy. Together, these articles serve to illuminate the issues for the optometric clinician.

Martin H. Birnbaum, O.D.
 Contributing Editor
 State University of New York
 State College of Optometry

MONOVISION CONTACT LENS FITTING:
A SAFE AND EFFECTIVE CLINICAL OPTION FOR PRESBYOPIES

- Paul Erickson, M.S., O.D.
- Paul Farkas, M.S., O.D.

ABSTRACT

The use of the term monovision to describe the concept of correcting one eye for optical infinity and the other eye for the near working distance is unfortunate. It implies that the presbyopic patient so corrected experiences vision in a way analogous to strabismus. A thoughtful review of available information will show that although monovision changes visual performance relative to full monocular vision, most key features of binocular vision are retained.

Monovision patients perceive a clear binocular image by virtue of binocular interactions occurring at the level of the visual cortex. When corresponding retinal loci receive a clear central image in one eye and a moderately blurred image in the other eye, blur is effectively suppressed under most conditions. Aspects of vision not requiring high resolution in both eyes appear to follow normal patterns.

In assessing the efficacy of monovision, it is important to view visual performance issues in the proper context. General practitioners and those specializing in binocular vision problems typically compare monovision to binocular spectacles correction. Contact lens practitioners tend to compare monovision to bifocal contact lens options. A desirable common ground is attained by recognizing that any optical correction of presbyopia produces inherent compromises in vision function and flexibility. Current evidence indicates that the vision compromises associated with monovision are at least as palatable as those associated with multifocal contact lenses and spectacles.

Continued on page 125
MONOVISION CONTACT LENS FITTING:
A CHANCY ANSWER FOR PRESBYOPIA CONTACT LENS PATIENTS

Stuart M. Rothman, O.D.

ABSTRACT
While the use of monovision contact lenses satisfies the desire of some presbyopic patients for convenience and cosmesis, a number of compromises of visual functioning result. Research has indicated that binocular visual acuity, contrast sensitivity, and binocular fusional ability can be adversely affected with monovision patients. Further, there is an apparent inconsistency for the clinician who has placed maximal binocular function as a key mission for optometric care to compromise this tenet for presbyopic patients.

KEY WORDS
binocular vision, contact lenses, contrast sensitivity, monovision, presbyopia, stereopsis

Contact lens compensation for presbyopia is an issue of increasing interest to the optometric practitioner as the patient population ages. The “baby-boom” generation, many of whom have been wearing contact lenses since their teens, are now becoming presbyopic. This was the first group of patients to benefit from the many technology breakthroughs in contact lenses in the 1970s and 1980s, including the advent of soft, extended wear, disposable, and gas permeable contact lenses. Many of them wish to continue contact lens wear without the need to use spectacle lenses for reading. The parents of these “baby-boomers” are also frequently interested in contact lens vision compensation.

Monovision, fitting one eye for distance and the fellow eye for near, was first discussed in the literature in the 1960s. It has become the most widely used method for the compensation of presbyopia with contact lenses by virtue of its decreased cost to the patient, decreased chair time to the practitioner, and greater availability of lens types and parameters. Success rates between 66% and 75% have been reported. This is higher than that obtained with bifocal contact lenses.

Despite its attractiveness, monovision is often viewed with initial skepticism on the part of presbyopic contact lens candidates. Further, monovision has not gained full acceptance by clinicians. The idea of recommending what is, at best, a compromise in vision and visual efficiency, runs counter to functional vision care concepts that stress the importance of evaluating and remediating binocular dysfunction. To many practitioners, it seems inappropriate to emphasize binocular function prior to the onset of presbyopia, and then to de-emphasize it once patients become presbyopic. It also seems inconsistent to strive for optimal binocular function in children while prescribing lenses for their parents which interfere with binocular function.

Monovision typically involves fitting the dominant eye with a distance vision contact lens and the non-dominant eye with a near vision contact lens. Alternate interocular suppression of the blurred image occurs between corresponding retinal areas to permit clear vision at both near and far. There are two different philosophies for prescribing the near addition. One suggests that minimizing the add power will maximize binocular function. The other suggests that maximizing the add power will facilitate suppression of the blurred image.

The anisometropic blur induced by monovision contact lens fitting has adverse effects on visual acuity, contrast sensitivity, fusion and stereopsis.

VISUAL ACUITY
Monovision produces a small reduction in high contrast distance visual acuity under binocular viewing conditions. This decrease in binocular visual acuity increases as the add power in the near vision lens is increased. Tasks likely to be adversely affected involve driving (involving distance acuity), and reading and writing (involving near acuity). The younger presbyope, who requires a low power addition, may meet minimum visual acuity standards for driving with either eye. The older presbyope, who requires a high power lens addition, will have poor distance acuity with the non-dominant eye, and must be counseled to use the dominant eye for viewing through both rear view and side view mirrors.

Schor et al. report that the suppression of the blurred image is most effective under photopic conditions. Monovision blur is more difficult to suppress when viewing a bright target on a dark background. The blur becomes more pronounced as contrast decreases, target size decreases, pupil size increases, and add power increases. These factors ac-

Continued on next page
Monovision induces a shift in the lateral phoria toward esophoria, both at distance and near,27,28 as well as a reduction in fusional vergence ranges. These effects are less pronounced when it is the dominant eye that is fit with the distance contact lens. The authors attribute these findings to binocular visual stress created by a blurred monocular image.

CONTRAST SENSITIVITY

Monovision has been found to decrease contrast sensitivity.17,18 With lower adds, only high spatial frequency resolution is reduced. When the addition is greater than 1.50 D, all spatial frequencies show a decrease in sensitivity as compared to binocular vision conditions. Binocular summation is not evident when high additions are used and contrast sensitivity approaches the monocular condition.

Reduction in the ability to discriminate low and medium spatial frequencies, when high adds are required, may be more detrimental to visual performance than the decrease in acuity discussed earlier. Activities such as driving and sports performance may be affected, particularly when lighting conditions are less than optimal. For example, tennis performance might be worse on cloudy days or indoors.

FUSION

Monocular blur causes a decrease in stereopsis.19-23 While this phenomenon is less pronounced with monovision than with spectacle blur, stereopsis is reduced with monovision correction.20 Gutowski and Cassin24 found stereopsis reduced from an average of 430 seconds of arc with spectacles to 384 seconds with monovision correction. Koetting25 found a reduction of stereopsis with a range of 58 to 96 seconds of arc. This reduction in stereopsis correlates with the power of the addition; higher adds cause greater reduction in stereacuity.24,26

The effect of this stereocuity reduction on visual performance has been studied by Sheedy et al.16 His subjects showed decreased performance on letter editing and pointer-in-straw performance eight weeks after the dispensing of monovision correction.

In this author's view, vision care practitioners should think long and hard about recommending monovision to patients with normal binocular vision. The clinician should recommend the method of treatment that is in the patient's best interest. This may be in direct conflict with the patient's desire at the time of fitting. It is the practitioner's duty to inform the patient of the various treatment options and the advantages and disadvantages of each. Potential risks, both short and long term, must be discussed and documented. The patient must be given the information in order to make an informed decision about treatment. The best treatment option may not necessarily be the easiest for either the practitioner or the patient.

For most patients, single, clear, binocular vision is the best option. This is what we consistently reinforce in virtually every patient encounter. Monovision causes impairment of binocular visual acuity, binocular contrast sensitivity, and first, second, and third degree fusion. It also interferes with performance on tasks such as driving, reading and sports activities.

Clear, single, binocular vision has long been a standard of optometric care. To discard this concept when patients become presbyopic, and embrace a philosophy that violates our core concepts of optimum visual performance has serious implications. Although patients want the convenience of contact lens correction without the need for spectacles, this should not be achieved at the expense of visual efficiency. As vision care providers, we need to encourage the development of technology that will achieve these goals without compromising visual function.

REFERENCES

Continued from page 122

PRACTICAL CONSIDERATIONS

Monovision has been successfully employed for 30 years. In general terms, monovision fitting is simple and cost effective. Fitting techniques are similar to those required for any contact lens prescription. The level of complexity required is similar to that for non-presbyopic contact lens fitting. Similarly, the cost of materials is the same as for non-presbyopic contact lenses and less than for bifocal contact lenses. In contrast with contact lens multifocals, there are no practical limits to the lens parameters (toric lenses, hard or soft lenses) which can be applied. For computer use, monovision may be advantageous in that clear images can be obtained for the prescribed working distance independent of the position of gaze. In addition, there are inherent advantages associated with the minimized vertex distance of contact lenses that can enhance the field of view and reduce unwanted effects related to off axis optics.

Finally, the psychological impact on new presbyopes (especially those who have not previously worn spectacles) of multifocal prescriptions can be minimized or eliminated by applying monovision correction. Proper attention to these cosmetic factors can be of significant value in practice building.

FUNCTIONAL CONSIDERATIONS

In spite of its history of clinical success, many clinicians remain unconvinced of the propriety of a technique that intentionally creates one or two dioptries of anisometropia in patients who have experienced balanced binocular vision throughout life. To address this under-standable skepticism, we next review research on a variety of vision functions with monovision.

1. Spatial Vision

Under optimum viewing conditions (high illumination, high contrast targets), binocular visual acuity with monovision is typically reduced less than one line from that achieved with full binocular correction. High contrast visual acuity of 6/6 is usually retained. There is a general reduction in contrast sensitivity compared to binocular correction that is proportional to the "add" (amount of anisometropia). These reductions are generally less than those found with contact lens multifocals.

Suppression of blur with monovision tends to break down with bright targets against a dark background. In our experience and that of other practitioners, this is manifested under night viewing conditions, and is the most common complaint of monovision patients. However, similar complaints are common with bifocal contact lens wearers.

2. Hyperacuity

Hyperacuity functions (Vernier and stereo) are known to be extremely sensitive to monocular blur. Reduction in these functions are proportional to the amount of monocular blur and hence to the additional plus in the near lens. Using the Wirt Tittus stereo test, McGill and Erickson found that stereocuity was typically reduced from 40 seconds of arc with full binocular correction to 80 to 100 seconds of arc with a 2 D monovision add. Ironically, stereocuity with most contact lens bifocals is often worse than with monovision.

3. Binocular Fusion

Although fixation disparity testing is not well suited to monovision conditions, no significant differences have been found...
between monovision and full binocular viewing. Most patients show a small eso shift when wearing monovision lenses. This is manifested in reduced base-in vergence ranges and a one to three prism diopter esophoric shift at distance and near. This shift tends to be more pronounced in unsuccessful monovision patients.

4. Accommodation

Although accommodation is an increasingly minor issue as presbyopia advances, laboratory studies have shown that early presbyopes have little difficulty sustaining blur suppression as target fixation shifts from one eye’s range of clear vision to that of the fellow eye when wearing monovision lenses. The range of clear vision obtained by subjects in this study suggested that the full, albeit limited, accommodative response remained intact with monovision.

5. Peripheral Vision

Since most functions mediated by the peripheral retina are relatively insensitive to blur, few performance deficits should be expected in those functions because of monovision. These include peripheral visual acuity, visual field size, spatial localization, and motion perception. In fact, monovision has been shown to have no significant effect on peripheral visual acuity, or field size.

Comprehensive reviews of advantages and limitations of monovision on vision function have been published elsewhere and should be consulted for more details.

PATIENT SELECTION AND MANAGEMENT

Clinical success with monovision can be maximized and concerns with its specific limitations and compromises minimized by careful patient selection. There is general agreement that the lower the monovision add, the higher the probability of success. This targets early presbyopes, preferably those who have first-time bifocal requirements, as the patient segment of choice for this treatment. This is consistent with research on the effects of increasing monovision and power in reducing contrast sensitivity and blur suppression.

Central to any decision on selecting a presbyopic prescription is a consideration of the patient’s specific vision require-

ments. Persons with requirements for very high resolution and stereocuity or heavy near work requirements are not good choices for monovision or contact lens bifocals. Those whose activities involve night driving generally require a sparse distance lens for the near corrected eye. Persons who require clear near vision in a variety of gaze positions (e.g., those who work with personal computers) may realize significant benefits from monovision.

Patients with a history of esophoria or related clinical findings may also represent higher risk of failure with monovision. Substandard vision in one eye is a contraindication for monovision. Persons who are highly sensitive to any visual compromise are unlikely to accept monovision and most other forms of presbyopic correction.

Finally, standard screening for suitability of contact lens wear is a requirement for any contact lens treatment decision. It has been noted that many of the ocular and visual changes associated with aging increase the risk/benefit ratio of contact lens wear. This reinforces the recommended emphasis of monovision correction to early presbyopes.

CONCLUSION

Although it is not appropriate for all presbyopic patients, monovision holds an important place among clinical treatment strategies for presbyopia. It has an impressive history of anecdotal success and is supported by a growing body of scientific literature, both in controlled clinical trials and applied research. Used judiciously, it presents an acceptable option to optometrists and their presbyopic patients.

REFERENCES

Corresponding author:
Paul Erickson, M.S., O.D.
Bausch & Lomb Optics Center
1400 N. Goodman St.
Rochester, NY 14692
Date accepted for publication: April 6, 1992