The USE of Low Powered Progressive Addition Lenses For Non-Presbyopic Patients

Bill B. Rainey, O.D.
Clifford W. Brooks, O.D.

Abstract
Many non-presbyopic optometric patients present with symptoms related to near work or computer use. Practitioners may be reluctant to prescribe low-powered progressive addition lenses for these patients because of concerns about adaptation or effectiveness. This study investigated the benefits of using low-powered progressive addition lenses (PALs) in a symptomatic non-presbyopic population. Fifteen computer users, and 21 non-computer users compared single vision distance spectacle prescriptions to PALs. Although the subjects seemed to take a little longer to adapt to the PALs, the PALs were preferred by a majority of subjects for reading and computer use. The low-powered PAL may be the lens of choice for non-presbyopic patients experiencing nearpoint symptoms.

Key Words
multifocals, progressive addition lenses, asthenopia, computer users

Symptoms such as asthenopia and eyestrain related to near work are common in optometric practice, especially among computer users. These symptoms can be related to accommodative problems such as insufficiency or infacility, vergence anomalies such as nearpoint eso- or exophoria, or even uncorrected refractive errors as low as 0.50 D. Management of such problems can be a challenge. One treatment option is prescribing low-plus additions for use at near, a common technique in the behavioral optometry approach.

In general, when near additions are prescribed, low-powered additions are seldom used in typical optometric practice. Perhaps patients who would benefit from a low add power would rather endure the discomfort of tired eyes than subject themselves to the annoyance and stigma of a bifocal segment. Many patients delay the inevitable by postponing the “40-something” eye exam for as long as possible, usually until the nearpoint symptoms become intolerable. Consequently, low add powers (i.e. +0.50 D and +0.75 D) are used primarily for myopia management and control in children, or for the occasional early presbyopic patient with very intense nearpoint demands.

Most progressive addition lenses are available in powers starting at +0.75 D. Some start at an add power of +1.00 D. And, as with straight-top bifocals, the number of progressive addition lenses having add powers below +0.75 D is limited. Judging from the availability of add powers in progressive lenses, it is likely that practitioners prescribe progressive addition lenses more frequently than traditional straight-top bifocals in these low powers.

If a patient is currently wearing glasses, most practitioners would consider prescribing new lenses for a refractive change of 0.50 to 0.75 D or more. Therefore, it would seem that if multifocal adaptation and acceptance were good, then low-powered lens additions would be used much more often. This would be true for non-presbyopic patients as well as presbyopic patients. It has been reported that non-presbyopic patients do function well and experience relief of nearpoint symptoms with the use of progressive lenses. In an effort to further investigate this, a study of non-presbyopic patient acceptance of low-powered near additions was undertaken.

Subjects
This study was limited to non-presbyopic subjects between the ages of 18 and 39 who were experiencing symptoms at reading distance. In addition, they had to be wearing single vision spectacles with a distance refractive correction at the time of the initial examination, and this prescription must have changed by at least 0.50 D in sphere or cylinder power at the initial examination. Thus, a comparison between a distance refractive change...
alone and a distance refractive change
combined with a low-powered add could
be made. The subjects were given a pre-
study questionnaire to determine the ex-
tent of their nearpoint symptoms.

Because of the increasing number of
symptomatic computer users appearing in
optometric practices, approximately
one-half of the subjects chosen for this
study were individuals who spent at least
20 hours per week at a computer. Patients
with corrected visual acuity of worse than
20/20, amblyopia, strabismus, or sig-
nificant ocular pathology were excluded. The
subjects who met these criteria were re-
cruited from consecutive comprehensive
examinations in the Indiana University
School of Optometry Primary Care Ser-
vise over a one-month period. Subjects
were completely instructed regarding their
participation in this study, and they all read
and signed an Informed Consent State-
ment approved by the Indiana University
Institutional Review Board.

Thirty-six subjects, with a mean age of
31.8 years, completed the study. Table 1
shows the composition of the subjects.
Table 2 lists the ages and occupations of
the subjects in the two groups (computer
users and non-computer users).

Methods
Following the comprehensive Primary
Care examination, the final distance re-
fractive correction was determined, along
with an add power of +0.50 D or +0.75 D.
Each of these two add powers was given
to approximately one-half of the subjects.
The near add power prescribed was based
on severity of symptoms, amplitude of
accommodation, negative and positive
relative accommodation, binocular
crossed-cylinder, and subjective appreci-
ation of the near addition. Those subjects
with more severe symptoms, or significant
problems with nearpoint testing, were
given the +0.75 D add power.

Before new lenses were provided,
each subject completed a survey to deter-
mine satisfaction with their current spe-
tacle prescription. Next, a frame was
selected and measurements were taken for
one pair of single vision (SV) lenses and
one pair of low-powered, American Opti-
cal TruVision Omni (AO OMNI) pro-
gressive addition lenses. The progressive
addition lenses were fit in accordance
with manufacturer's instructions.

Table 1
Subject composition

<table>
<thead>
<tr>
<th></th>
<th>Computer users (≥4 hrs/day)</th>
<th>Non-computer users (<4 hrs/day)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of subjects</td>
<td>15</td>
<td>21</td>
<td>36</td>
</tr>
<tr>
<td>Number of males</td>
<td>5</td>
<td>9</td>
<td>14</td>
</tr>
<tr>
<td>Number of females</td>
<td>10</td>
<td>12</td>
<td>22</td>
</tr>
<tr>
<td>Average age</td>
<td>32.6</td>
<td>31.2</td>
<td>31.8</td>
</tr>
</tbody>
</table>

Table 2
Subject composition and ages

<table>
<thead>
<tr>
<th>Category</th>
<th>Occupation</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer users (n=15)</td>
<td>computer consultant</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>student</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>secretary</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>librarian</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>secretary</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>freelance writer</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>data entry clerk</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>media researcher</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>realtor</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>secretary</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>VDT operator</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>library assistant</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>records clerk</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>VDT operator</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>student</td>
<td>20</td>
</tr>
<tr>
<td>Non-computer users (n=21)</td>
<td>professor</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>editor/translator</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>student</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>social worker</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>janitor</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>student</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>proofreader</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>student</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>professor</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>professor</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>bank teller</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>student</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>packaging inspector</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>student</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>probation officer</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>electronic technician</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>student</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>janitor</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>student</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>building inspector</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>secretary</td>
<td>32</td>
</tr>
</tbody>
</table>
were returned to the subject, with instructions to wear both pairs for direct comparison purposes over a two-week period. At the return visit following this final two-week period, the subject completed one last survey which asked comparative questions, such as relative ease of adaptation and use, distance and near vision quality, and symptom relief. The subject was then told to choose one pair of glasses based upon overall preference.

Results

Figures 1 through 5 show the ratings of the SV and progressive addition lenses (PALS). From these figures, the following comments can be made:

1. **Adaptation time (Figure 1)** - Clearly, more subjects were able to adapt to the SV lenses during the first three days of wear than to the PALS. However, it is important to note that only one subject was unable to eventually adapt to the PALS, whereas three subjects could not adapt to the SV lenses.

2. **Reading performance (Figure 2)** - Thirty subjects rated the SV lenses as “satisfactory” or better, and 34 rated the PALS as “satisfactory” or better. Six subjects rated the SV lenses as “poor” or “can’t use,” whereas only two rated the PALS this way.

3. **Computer performance (Figure 3)** - Although only 15 subjects were in the “computer users” group, all subjects were able to rate the lenses on computer performance. Ratings of “satisfactory” or better, similar to those given in reading performance, were recorded here (SV: 32; PALS: 36). Four subjects rated the SV lenses as “poor” or “can’t use,” and none rated the PALS this way.

4. **Distance vision (Figure 4)** - Ratings in this category were very similar for the SV and PALS prescriptions.

5. **Comfort at work (Figure 5)** - Again, ratings in this category were similar for both prescriptions; however, four subjects rated the SV lenses in the “can’t use” category, compared to only one for the PALS.

Lens preferences were also given for each of these five categories (Figure 6). Each subject chose the preferred lens in each category, or chose “no preference” if neither lens was preferred. The SV lenses were preferred by more subjects in the adaptation time and distance vision categories. The PALS were preferred by more subjects in the reading performance, computer vision, and comfort at work categories.

When asked to select the preferred lens overall, more subjects chose the PALS (20) than the SV lenses (14). This overall preference can also be seen in both groups of subjects when comparing computer users to non-computer users (Figures 7 and 8).

Discussion

Despite being masked to the lenses, most subjects recognized the task-difference effect of the two lens types. Although 39% of the subjects chose the single vision lenses at the end of the study, many of the individuals said they liked the AO OMNI progressive addition lenses best for certain near tasks. If there had been an option for obtaining a second pair of glasses, many subjects likely would have utilized both types of lenses.

Although not specifically addressed by survey, several subjects complained of minor lens reflection problems with the AO OMNI lenses. These problems could have been resolved with the use of an anti-reflection lens coating; however, this study used only untinted, uncoated lenses in order to isolate preference factors.

The adaptation process seemed to take longer, as one might expect, with the progressive addition lenses. However, all but one subject eventually adapted, and most subjects adapted within a one-week period.
Also of interest is the fact that most of the subjects in the "computer users" group had an overall preference for the AO OMNI lenses. Practitioners are often reluctant to prescribe progressive addition lenses for computer use because of the peripheral lens distortions, which are typically assumed to limit intermediate range viewing to a narrow channel of clear vision. This does not seem to be a problem with low-powered progressive addition lenses. The combination of non-presbyopia and low add powers permits viewing of intermediate range objects through either the distance or near lens areas without blur. Thus, practitioners should not avoid low add progressives even in the case of prolonged computer use.

Conclusion

For non-presbyopic individuals with nearpoint symptoms and appropriate clinical findings, the lens of choice for reading and close work is the low-powered progressive addition lens. This is true even in the case of patients who use a computer extensively. The results of this study indicate that the majority of non-presbyopic patients with nearpoint symptoms will choose a low add progressive lens over a single vision lens that is prescribed with the distance correction only.

Acknowledgments

The authors wish to thank Joanne DeLone for help in study administration and organization, and Edward Uyesugi, O.D.,
for his assistance in clinical management of subjects. We gratefully acknowledge the help of American Optical, Southbridge, MA, for their encouragement and generosity in underwriting the expenses of this project.

TruVision OMNI is a registered trademark of American Optical.

References

Corresponding author:
Bill B. Rainey, O.D.
Indiana University School of Optometry
800 East Atwater Avenue
Bloomington, IN 47405-3680
Date accepted for publication:
February 14, 1997

With Your Help We Can Advance Optometric Research.

You often read and hear of breakthroughs in patient treatment, eye health care, and clinical procedures that are happening all the time. None of these would occur without funding provided by organizations like the American Optometric Foundation.

Research is essential to professional growth and the Foundation needs your help to continue building the profession. Join others who have recognized that by giving something back to optometry, they are investing in their own future. One more person can make a difference in funding additional research programs.

For more information on the American Optometric Foundation and how you can become a member, call (301) 984-4734, or write to:

AMERICAN OPTOMETRIC FOUNDATION
6110 Executive Boulevard • Suite 506
Rockville, MD 20852
www.aaopt.org

The space for this ad has been generously donated by this publication.

Membership payments to the AOF are tax deductible as charitable contributions for Federal Income Tax purposes.

BE A CONTRIBUTOR